Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Current issues in molecular biology ; 44(3):1115-1126, 2022.
Article in English | EuropePMC | ID: covidwho-1876743

ABSTRACT

Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and integrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 into human liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure.

2.
Infect Ecol Epidemiol ; 11(1): 1993535, 2021.
Article in English | MEDLINE | ID: covidwho-1505855

ABSTRACT

BACKGROUND: The COVID-19 pandemic presents great challenges on transmission prevention, and rapid diagnosis is essential to reduce the disease spread. Various diagnostic methods are available to identify an ongoing infection by nasopharyngeal (NPH) swab sampling. However, the procedure requires handling by health care professionals, and therefore limits the application in household and community settings. OBJECTIVES: In this study, we aimed to determine if the detection of SARS-CoV-2 can be performed alternatively on saliva specimens by rapid antigen test. STUDY DESIGN: Saliva and NPH specimens were collected from 44 patients with confirmed COVID-19. To assess the diagnostic accuracy of point-of-care SARS-CoV-2 rapid antigen test on saliva specimens, we compared the performance of four test products. RESULTS: RT-qPCR was performed and NPH and saliva sampling had similar Ct values, which associated with disease duration. All four antigen tests showed similar trend in detecting SARS-CoV-2 in saliva, but with variation in the ability to detect positive cases. The rapid antigen test with the best performance could detect up to 67% of the positive cases with Ct values lower than 25, and disease duration shorter than 10 days. CONCLUSION: Our study therefore supports saliva testing as an alternative diagnostic procedure to NPH testing, and that rapid antigen test on saliva provides a potential complement to PCR test to meet increasing screening demand.

3.
Infect Dis (Lond) ; 53(9): 707-712, 2021 09.
Article in English | MEDLINE | ID: covidwho-1223278

ABSTRACT

BACKGROUND: Nosocomial outbreaks of coronavirus disease 2019 (COVID-19) can have devastating consequences from both a resource cost and patient healthcare perspective. Relying on reverse transcription-polymerase chain reaction (RT-PCR) for identifying infected individuals may result in missed cases. Screening for antibodies after an outbreak can help to find missed cases and better illuminate routes of transmission. METHODS: In this study, we present the results of a serological screening of the healthcare workers (HCWs) on a ward for infectious diseases in Sweden with a point-of-care antibody test 8 weeks after an outbreak of COVID-19. In all, 107/123 (87%) of HCWs who were tested with RT-PCR in the outbreak investigation participated in this study on seroprevalence. Participants were also asked to fill out a questionnaire entailing epidemiological data. The cohort was stratified by RT-PCR result and the resulting groups were compared to each other. RESULTS: Six (8%) HCWs who were tested RT-PCR negative during the outbreak investigation had developed specific IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These HCWs had all worked shifts with colleagues who later were tested RT-PCR positive during the outbreak. CONCLUSIONS: Our results indicate that a serological follow-up screening after an outbreak may be used as a complement to virus detection in an outbreak situation. However, immunoglobulin (Ig) G-detection should also be performed at the start of an outbreak, to facilitate interpretation of the results.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Disease Outbreaks , Health Personnel , Humans , Seroepidemiologic Studies , Sweden/epidemiology
4.
Infect Dis (Lond) ; 53(6): 460-468, 2021 06.
Article in English | MEDLINE | ID: covidwho-1124479

ABSTRACT

BACKGROUND: In health care workers SARS-CoV-2 has been shown to be an occupational health risk, often associated with transmission between health care workers. Yet, insufficient information on transmission dynamics has been presented to elucidate the precise risk factors for contracting SARS-CoV-2 in this group. METHODS: In this cross-sectional study, we investigated association between questionnaire answers on potential exposure situations and SARS-CoV-2-positivity. Health care workers with and without COVID-19-patient contact at nine units at Skåne University Hospitals in Malmö and Lund, Sweden and university employees from Lund University, Sweden were enrolled. To limit impact of health care worker to health care worker transmission, units with known outbreaks were excluded. A SARS-CoV-2-positive case was defined by a previous positive PCR or anti-SARS-CoV-2 IgG in the ZetaGene COVID-19 Antibody Test. RESULTS: SARS-CoV-2-positivity was detected in 11/51 (22%) health care workers in COVID-19-units, 10/220 (5%) in non-COVID-19-units and 11/192 (6%) University employees (p = .001, Fischer's exact). In health care workers, SARS-CoV-2-positivity was associated with work in a designated COVID-19-unit (OR 5.7 (95CI 2.1-16)) and caring for COVID-19-patients during the majority of shifts (OR 5.4 (95CI 2.0-15)). In all participants, SARS-CoV-2-positivity was associated with a confirmed COVID-19 case (OR 10 (95CI 2.0-45)) in the household. CONCLUSION: Our study confirmed previous findings of elevated risk of acquiring SARS-CoV-2 in health care workers in COVID-19-units, despite exclusion of units with known outbreaks. Interestingly, health care workers in non-COVID-19-units had similar risk as University employees. Further measures to improve the safety of health care workers might be needed.KEY POINTSPrevious findings of elevated risk of contracting SARS-CoV-2 in health care workers with COVID-19 patient contact was confirmed, despite exclusion of wards with known SARS-CoV-2 outbreaks. Further measures to improve the safety of health care workers might be needed.


Subject(s)
COVID-19 , SARS-CoV-2 , Cross-Sectional Studies , Health Personnel , Humans , Sweden
5.
Infect Ecol Epidemiol ; 10(1): 1821513, 2020 Sep 20.
Article in English | MEDLINE | ID: covidwho-801088

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has created a global health- and economic crisis. Detection of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes COVID-19 by serological methods is important to diagnose a current or resolved infection. In this study, we applied a rapid COVID-19 IgM/IgG antibody test and performed serology assessment of antibody response to SARS-CoV-2. In PCR-confirmed COVID-19 patients (n = 45), the total antibody detection rate is 92% in hospitalized patients and 79% in non-hospitalized patients. The total IgM and IgG detection is 63% in patients with <2 weeks from disease onset; 85% in non-hospitalized patients with >2 weeks disease duration; and 91% in hospitalized patients with >2 weeks disease duration. We also compared different blood sample types and suggest a higher sensitivity by serum/plasma over whole blood. Test specificity was determined to be 97% on 69 sera/plasma samples collected between 2016-2018. Our study provides a comprehensive validation of the rapid COVID-19 IgM/IgG serology test, and mapped antibody detection patterns in association with disease progress and hospitalization. Our results support that the rapid COVID-19 IgM/IgG test may be applied to assess the COVID-19 status both at the individual and at a population level.

SELECTION OF CITATIONS
SEARCH DETAIL